Evolving opportunities for providing thermal comfort
This article summarises a research paper, ‘Evolving opportunities for providing thermal comfort’ by Gail Brager, Hui Zhang & Edward Arens published in 2015 in --Building Research & Information, 43:3, 274-287, DOI: 10.1080/09613218.2015.993536.
The paper proposes new ways of thinking about the design and operation of buildings to provide enhanced thermal experiences and reduce energy consumption. The strategies that are suggested are supported by research, development and monitoring of new practices carried out by the Center for the Built Environment (CBE) at the University of California, Berkeley.
It is estimated that buildings in the USA contribute 39% of total greenhouse gas emissions, with 80% of this resulting from energy use for heating, cooling, ventilation and lighting. A significant proportion of this energy use is a consequence of controlling the internal environment of buildings within a narrow range of temperatures, even though this leaves 20% of occupants dissatisfied.
The current tendency is to create uniform conditions in buildings with a temperature range of between 22 and 24°C, delivered through fully-controlled heating, ventilation and air conditioning (HVAC) systems. However, this is energy intensive and can result in thermal monotony, or thermal boredom. In addition, cooling systems frequently over-cool, delivering temperatures in the summer that are below those in the winter.
Studies have suggested that for every 1°C of expansion in either direction of the narrowly-controlled thermal ‘dead zone’, annual central HVAC energy consumption can be reduced by 10%. In addition, it is proposed that greater comfort, and even thermal pleasure, can be achieved by a more dynamic, non-uniform environment, and that a temperature range of 21 to 27°C can achieve optimal operative performance.
The paper suggests that performance is more strongly related to thermal comfort, rather than temperature per se, with influences such as; humidity, air movement, operative control and personal comfort systems, and it cites an emerging understanding of ‘alliesthesia’ which proposes that more variable indoor environments can enhance satisfaction and well-being.
The paper sets out five changes that could help deliver a richer thermal environment and reduce energy consumption:
- Moving from centralised to personal control.
- From still to breezy air movement.
- From thermal neutrality to delight.
- From active to passive design.
- From disengagement to improved feedback.
To remove barriers to adopting these changes, practitioners and researchers must work together to influence building standards, design guidelines and green building rating systems.
Gail Brager, Hui Zhang & Edward Arens (2015) Evolving opportunities for providing thermal comfort, Building Research & Information, 43:3, 274-287, DOI: 10.1080/09613218.2015.993536.
Read the full paper at Taylor & Francis Online.
See also:
- Richard de Dear (2011) Revisiting an old hypothesis of human thermal perception: alliesthesia. Building Research & Information, 39:2, 108-117. DOI: 10.1080/09613218.2011.552269.
- Thomas Parkinson & Richard de Dear (2015) Thermal pleasure in built environments: the physiology of alliesthesia. Building Research & Information, 43:3, 288-301. DOI: 10.1080/09613218.2015.989662.
[edit] Find out more
[edit] Related articles on Designing Buildings Wiki
- BREEAM Thermal comfort.
- Cold stress.
- Comfort in low energy buildings.
- Dry-bulb temperature.
- Globe temperature.
- Healthy excursions outside the thermal comfort zone.
- Heat stress.
- Mean radiant temperature.
- Operative temperature.
- Overheating.
- Predicted mean vote.
- Psychometric charts.
- Sling psychrometer.
- Temperature.
- Thermal comfort.
- Thermal indices.
- Thermal pleasure in built environments: physiology of alliesthesia.
- Wet-bulb temperature.
- Wet-bulb globe temperature.
Featured articles and news
Retrofit 25 – What's Stopping Us?
Exhibition Opens at The Building Centre.
Types of work to existing buildings
A simple circular economy wiki breakdown with further links.
A threat to the creativity that makes London special.
How can digital twins boost profitability within construction?
The smart construction dashboard, as-built data and site changes forming an accurate digital twin.
Unlocking surplus public defence land and more to speed up the delivery of housing.
The Planning and Infrastructure Bill
An outline of the bill with a mix of reactions on potential impacts from IHBC, CIEEM, CIC, ACE and EIC.
Farnborough College Unveils its Half-house for Sustainable Construction Training.
Spring Statement 2025 with reactions from industry
Confirming previously announced funding, and welfare changes amid adjusted growth forecast.
Scottish Government responds to Grenfell report
As fund for unsafe cladding assessments is launched.
CLC and BSR process map for HRB approvals
One of the initial outputs of their weekly BSR meetings.
Architects Academy at an insulation manufacturing facility
Programme of technical engagement for aspiring designers.
Building Safety Levy technical consultation response
Details of the planned levy now due in 2026.
Great British Energy install solar on school and NHS sites
200 schools and 200 NHS sites to get solar systems, as first project of the newly formed government initiative.
600 million for 60,000 more skilled construction workers
Announced by Treasury ahead of the Spring Statement.
The restoration of the novelist’s birthplace in Eastwood.
Life Critical Fire Safety External Wall System LCFS EWS
Breaking down what is meant by this now often used term.
PAC report on the Remediation of Dangerous Cladding
Recommendations on workforce, transparency, support, insurance, funding, fraud and mismanagement.
New towns, expanded settlements and housing delivery
Modular inquiry asks if new towns and expanded settlements are an effective means of delivering housing.